
11/1/2021

1

1

Data Structure

Lecture 3:

Linear Data Structure: The Stack

INSTRUCTOR

ALI A. AL-ANI

Department of Computer Science

College of Science

2

Department of Computer Science

College of Science

LDS: Stack

• A stack is a linear data structure which can be accessed only at one of its ends for storing and

retrieving data. For this reason, a stack is called an LIFO structure: last in/first out.

11/1/2021

2

3

Department of Computer Science

College of Science

LDS: Stack Operation

• The two main operations which can be applied to a stack are given special names, when an item is

added to a stack, it is Pushed to the stack, and when an item is removed, it is Popped from the stack.

1. Push(): Insert element e at the top of the stack.

2. Pop(): Remove the top element from the stack; an error occurs if the stack is empty.

• Additionally, these supporting functions:

1. size(): Return the number of elements in the stack.

2. Isempty(): Return true if the stack is empty and false otherwise.

3. Isfull(): Return true if the stack is full and false otherwise.

4

Department of Computer Science

College of Science

LDS: Stack Representation

• Since a stack is a linear data structure, any linear data structure implementation will do. A stack can

be implemented by means of Array and Linked List. Stack can either be a fixed size one or it may have a

sense of dynamic resizing

1. Non-linked- structures (The array).

2. Linked structures (Linked list).

11/1/2021

3

5

Department of Computer Science

College of Science

Stack : Array Representation

• The simplest method to represent a stack is to use an array to be home of the stack.

• The stack may therefore be declared and containing two objects: an array with suitable size and with

suitable data type (Int, Float,..etc) to hold the elements of the stack, and an integer to indicate the

position of the current stack top within the array.

• Ex: The below declaration example in the C++ language

const SIZE= 10;

Int stack[SIZE];

Int top= -1; // That is mean the stack empty.

6

Department of Computer Science

College of Science

• Push process: To perform the Push process to add new element in the stack, we should follow the

following steps:

1. Verification the stack is not full through the value of index pointer 'top' if it is less than the size of

'stack -1' or not. To avoid the case of overflow the size and unable to perform the addition process.

2. Update the value of the index pointer 'top=top+1', To refer to the following empty location.

3. Add the new element in the new location 's[top]=the new value/.

Stack : Array Representation

11/1/2021

4

7

Department of Computer Science

College of Science

• Sub program to sure if the stack is full or not

int fullstack()

{ if (top>=size-1) return(1);

else return(0); }

• Sub program to add an element to the Stack

void push(int item)

{ if(fullstack()) {

cout<<"error...the stack is full"<<endl;

cout<<"press any key to exit"<<endl;

getch(); exit(0); }

Else { top=top+1; stack[top]=item; }

}

Stack : Array Representation

Top = 3 D

Item = E C Error> the stack is full

B

A

push Top = 3 E

Item = E Top = 2 C C

B B

A A

8

Department of Computer Science

College of Science

• Pop Process: To perform the properly deletion process, we should follow the following steps:

• Verification the stack is not empty through the value of the pointer 'top' it is not equal -1 'top!= -1'. To

avoid the case of underflow the size and unable to perform the deletion process.

• Take the element from the stack and store it in temporary location 'item = s[top]'.

• Update the value of the index pointer 'top=top - 1', To refer to the following location after the element

deleted.

Stack : Array Representation

11/1/2021

5

9

Department of Computer Science

College of Science

• Sub program to sure if the stack is empty or not

int emptystack()

{ if(top==-1) return(1);

else return(0); }

• Sub program to delete an element from the stack

void pop()

{ if(emptystack()) {

cout<<"error>the stack is empty"<<endl;

cout<<"press any key to exit"<<endl; getch(); exit(0); }

Else {

item=stack[top];

top=top-1; }}

Stack : Array Representation

Error> the stack is empty

Top = -1

pop

Top = 2 C Item = C

B Top = 2 B

A A

10

Department of Computer Science

College of Science

• The second implementation of a stack uses a singly linked list. We perform a Push by inserting at the

Front of the list and perform a Pop by deleting the element at the Front of the list.

Stack : Linked List Representation

10 Link

20 Link

30 Link

40 Null

Top

11/1/2021

6

11

Department of Computer Science

College of Science

• A linked-list is somewhat of a dynamic array that grows and shrinks as values are added to it. Rather

than being stored in a continuous block of memory, the values in the dynamic array are linked together

with pointers.

• The below declaration example in the C++ language represent the linked stack by using a structure that

contains a value and a link to its neighbor.

struct node{

int data;

struct node*link;

}*top,*p,*q;

Stack : Linked List Representation

12

Department of Computer Science

College of Science

• Sub program to add new element to the linked stack:

• The following sub-program add a new node to the stack (a pointer to a stack and a value that is to be

pushed onto the stack). When we push a value onto the stack, we should:

1. create a new node with the (new) function.

2. Set the next field of that new node to point to the top node in the stack (NULL if there is no element in

the stack).

3. Set the top field of the stack to point to the new node.

Stack : Linked List Representation

11/1/2021

7

13

Department of Computer Science

College of Science

void push()

{

p=new node;

cout<<"input element"<<endl;

cin>>p->data;

if(top==NULL)

p->link=NULL;

else

p->link=top;

top=p;

}

Stack : Linked List Representation

10 Link

20 Link

30 Link

40 Null

Top

5 LinkP
1

2

14

Department of Computer Science

College of Science

• Sub program to delete an element from the stack :

• The following sub-program pop an element form the stack and return the value from the top of the stack.

It should then:

1. Print out an error if the stack is empty.

2. Set the top field to point to the next node.

3. Free the space associated with the old node.

Stack : Linked List Representation

11/1/2021

8

15

Department of Computer Science

College of Science

void pop()

{ int value;

if(top == NULL)

{ cout<<"error>linked stack is empty"<<endl;

cout<<"press any key to exit"<<endl;

getch(); exit(0); }

else { q = top;

value = q->data;

top = q->link;

delete (q); } }

Stack : Linked List Representation

2

q

1

10 Link

20 Link

30 Link

40 Null

Top

16

Department of Computer Science

College of Science

• There are many applications of the stack such as:

1. Matching Parentheses and HTML Tags.

2. Recursive Function.

3. Calling Function.

4. Expression Conversion.

A. Infix to Postfix.

B. Infix to Prefix.

C. Postfix to Infix.

D. Prefix to Infix.

5. Expression Evaluation.

6. Towers of Hanoi.

Stack : Applications

11/1/2021

9

17

Department of Computer Science

College of Science

• Generally, the stack is very useful in situations when data have to be stored and the retrieved in reverse

order.

• One application of the stack is in matching delimiters in a program. This is an important example

because delimiter matching is part of any compiler: No program is considered correct if the delimiters

are mismatched.

• In C++ programs. we have the following delimiters parentheses'(' and ')', square brackets '[' and ']',

curly brackets '{' and '}', and comment delimiters '/*' and '*/'.

SA: Matching Parentheses

18

Department of Computer Science

College of Science

• Example: Let's see what happens on the stack for a typical

correct string: a{b(c[d]e)f}

• As it's read, each opening delimiter is placed on the stack.

Each closing delimiter read from the input is matched with

the opening delimiter popped from the top of the stack.

SA: Matching Parentheses Char. Read Stack

a Empty

{ {

b {

({(

c {(

[{([

d {([

] {(

e {(

) {

f {

}

11/1/2021

10

19

Department of Computer Science

College of Science

• When there is a function call, all the important information that needs to be saved.

• Stack is very useful tool used by the compiler in programs that contain sub-programs (procedures or

functions) to keep the return addresses.

• When the main program call the sub-program (function or procedure) the main program require to

store the next instruction address after the calling instruction. so the main program can execute the

sub-program and properly return back to next step after calling instruction.

SA: Function Calls

20

Department of Computer Science

College of Science

• For example: Suppose the following program call the number of the sub-programs

Begin { This is the main program }

100 CALL A

101 Function (A)

--- ---

--- 200 CALL B

--- 201 Function (B)

--- --- -------

--- --- -------

--- --- --------

End { The end of main program }

Stack Applications: Function Calls

push push

Top = 1 201

Top = -1 Top = 0 101 101

pop pop

Top = 1 201

101 Top = 0 101 Top = -1

11/1/2021

11

21

Department of Computer Science

College of Science

• Arithmetic expressions consisting variables, constants, arithmetic operators and parentheses. Humans

generally write expressions in which the operator is written between the operands (3 + 4). This is called

infix notation. The term infix indicates that every binary operators appears between its operands.

• It is easy for humans to read, write, and speak in infix notation but the same does not go well with

computing devices. An algorithm to process infix notation could be difficult and costly in terms of time

and space consumption.

• humans usually apply the rules of precedence to set parentheses, i.e., to determine the order of

evaluation, e.g., 1*2+3 = (1*2)+3

SA: Arithmetic Expression

22

Department of Computer Science

College of Science

• The process of writing the operators of expression either before (prefix notation) their operands or

after (postfix notation) them is called DPolish NotationE. The Polish notation refers to these complex

arithmetic expressions in two forms:

• If the operator symbols are placed before its operands, then the expression is in prefix notation (also

known as Polish prefix notation) +AB

• If the operator symbols are placed after its operands, then the expression is in postfix notation (also

known as Polish postfix notation) AB+

SA: Arithmetic Expression

11/1/2021

12

23

Department of Computer Science

College of Science

• One of the compilerFs task is to Convert and evaluate arithmetic expression. Example of assignment

statement: y = x + z * (w / x + z * (7 + 6))

• Compiler must determine whether the right expression is a syntactically legal arithmetic expression

before evaluation can be done on the expression.

• Stack is used by compilers to help in the process of converting infix to postfix arithmetic expressions

and also evaluating arithmetic expressions

• The advantage of using prefix and postfix is that we donFt need to use precedence rules, associative

rules and parentheses when evaluating an expression.

SA: Arithmetic Expression

24

Department of Computer Science

College of Science

• Generally postfix expressions are free from operator

precedence that why they are preferred in computer

system. Computer system uses postfix to represent

expression.

• This process (infix to postfix) can be done by using

one stack and output list. The following graph show

the Order Of Precedence For Operators

^, (),Not

*, /, AND, DIV, MOD

+, -, OR

=, <, >, !=, <=, >=

SA: Convert infix to Postfix

11/1/2021

13

25

Department of Computer Science

College of Science

• In this conversion process we are reading token from Left to Right and Postfix expression is :

1. If Entered Character is Alphabet or Digit then Following Action Should be taken:

1. Print Alphabet as Output in the list.

2. If Entered Character is Opening Bracket then the action should be taken:

1. Push /(/ Onto Stack

2. If any Operator Appears before /)F then Push it onto Stack.

3. If Corresponding /)F bracket appears then Start Removing Elements [Pop] from Stack till /(/ is

removed.

SA: Convert infix to Postfix

26

Department of Computer Science

College of Science

3. If Entered Character is Operator then following action should be taken:

1. Check Whether There is any Operator Already present in Stack or not.

2. If Stack is Empty then Push Operator Onto Stack.

3. If Present then Check Whether Priority of Incoming Operator is greater than Priority of Top most

Stack Operator.

4. If Priority of Incoming Operator is Greater then Push Incoming Operator Onto Stack.

4. Else Pop Operator From Stack again go to Step 3.

SA: Convert infix to Postfix

11/1/2021

14

27

Department of Computer Science

College of Science

• A trace of the algorithm that converts the infix A/B^C-D expression to postfix form.

Expression Current Symbol Stack List Comment

A/B^C-D Initial State NULL L Initially Stack is Empty

/B^C-D A NULL A Print Operand

B^C-D / / A Push Operator Onto Stack

^C-D B / AB Print Operand

C-D ^ /^ AB
Push Operator Onto Stack because Priority of ^
is greater than Current Topmost Symbol of Stack
i.e M/N

-D C /^ ABC Print Operand

SA: Convert infix to Postfix

28

Department of Computer Science

College of Science

SA: Arithmetic Expression
Expression Current Symbol Stack String Comment

D L / ABC^

Step 1 : Now M^N Has Higher Priority than
Incoming Operator So We have to Pop
Topmost Element .
Step 2 : Remove Topmost Operator From Stack
and Print it

D L NULL ABC^/

Step 1 : Now M/N is topmost Element of Stack
Has Higher Priority than Incoming Operator
So We have to Pop Topmost Element again.
Step 2 : Remove Topmost Operator From Stack
and Print it

D L L ABC^/
Step 1 : Now Stack Becomes Empty and We
can Push Operand Onto Stack

NULL D L ABC^/D Print Operand

NULL NULL L ABC^/D-
Expression Scanning Ends but we have still
one more element in stack so pop it and display
it

11/1/2021

15

29

Department of Computer Science

College of Science

• To evaluate a complex infix expression, a compiler would first convert the expression to postfix

notation, and then evaluate the postfix version of the expression.

• We can evaluate a postfix expression using a stack. Each operator in a postfix string corresponds to the

previous two operands . Each time we read an operand we push it onto a stack.

• When we reach an operator its associated operands (the top two elements on the stack) are popped out

from the stack.

• We then perform the indicated operation on them and push the result on top of the stack so that it will be

available for use as one of the operands for the next operator.

SA: Expression Evaluation

30

Department of Computer Science

College of Science

• Reading the expression from left to right: Read the next element /* first element for first time */

1. If element is operand than: Push the element in the stack

2. If element is operator then

1. Pop two operands from the stack /* POP one operand in case of NOT operator*/

2. Evaluate the expression formed by the two operands and the operator

3. Push the results of the expression in the stack end.

3. If no more elements then: POP the result else go to step 1

4. Exit

SA: Expression Evaluation

11/1/2021

16

31

Department of Computer Science

College of Science

• Execute the following infix notation using the stack. 1 2 3 + *

SA: Expression Evaluation

Push Push Push
Pop 2

operand
push

Pop 2

operand
Push

3+2 5*1

Top=2 3 Push

the

result to

the

stack

Push

the

result to

the

stack

Top=1 2 2 Top=1 5

Top= -1 Top=0 1 1 1 1 Top=0 5

32

Department of Computer Science

College of Science

• Convert the following infix expressions into postfix notations using stack:

1. a+b^2/4-(c*5/8-f) ^3

2. m^3 or n-b/2 and (m+n)

3. a^(b/2)and (x-y/3+w)or(c^3)^2

4. b-a+c and n^x-(p/m or f^2)

5. n^x-(p*4+m)/f or Lc/b^2

1. Execute the following postfix notation using the stack: ab*cde^/+ when a=5, b=6,c=8,d=2,e=2

2. Execute the following infix notation using the stack: a/(b*c/2)^4+m if a=10,b=8,c=4,m=20

SA: Home Work

11/1/2021

17

33

Department of Computer Science

College of Science

The End

